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Practical Examples: Binary Responses

Consider the following situations:

• A weatherman would like to understand if the probability 
of a rainy day occurring depends on atmospheric 
pressure, temperature, or relative humidity

• A doctor wants to estimate the chance of a stroke 
incident as a function of blood pressure or weight

• An engineer is interested in the likelihood of a device 
failing functionality based on specific parametric 
readings



More Practical Examples
• The corrections department is trying to learn if the 

number of inmate training hours affects the probability 
of released prisoners returning to jail (recidivism)

• The military is interested in the probability of a missile 
destroying an incoming target as a function of the 
speed of the target

• A real estate agency is concerned with measuring the 
likelihood of selling property given the income of 
various clients

• An equipment manufacturer is investigating reliability 
after six months of operation using different spin rates 
or temperature settings  



Binary Responses

• In all these examples, the dependent variable is a 
binary indicator response, taking on the values of 
either 0 or 1, depending on which of of two categories 
the response falls into: success-failure, yes-no, rainy-
dry, target hit-target missed, etc.

• We are interested in determining the role of 
explanatory or regressor variables X1, X2, … on the 
binary response for purposes of prediction.



Simple Linear Regression

Consider the simple linear regression model for a 
binary response:

where  the indicator variable Yi = 0, 1.
Since                 , the mean response is 

Y Xi i i= + +β β ε0 1

( )E Y Xi i= +β β0 1

( )E iε = 0



Interpretation of Binary Response

• Since Yi can take on only the values 0 and 1, we 
choose the Bernoulli distribution for the probability 
model.  

• Thus, the probability that Yi = 1 is the mean pi and the 
probability that Yi = 0 is 1- pi. 

• The mean response 

is thus interpreted as the probability that Yi = 1 when 
the regressor variable is Xi.

E Y p p pi i i i( ) ( )= × + × − =1 0 1



Model Considerations
Consider the variance of Yi for a given Xi :

We see the variance is not constant since it 
depends on the value of Xi.  This is a violation of 
basic regression assumptions.

• Solution: Use weighted least squares regression in 
which the weights selected are inversely proportional 
to the variance of Yi, where 
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Distribution of Errors

• Note also that the errors cannot be normally 
distributed since there are only two possible values 
(0 or 1)  for εi at each regressor level.

• Fitted model should have the property that the 
predicted responses lie between 0 and 1 for all Xi

within the range of original data.  No guarantee that 
the simple linear model will have this behavior.  



Example 1: Missile Test Data*
Test 

Firing I

Target 
Speed 

(knots) x i
Hit or M iss 

yi
1 400 0
2 220 1
3 490 0
4 410 1
5 500 0
6 270 0
7 200 1
8 470 0
9 480 0

10 310 1
11 240 1
12 490 0
13 420 0
14 330 1
15 280 1
16 210 1
17 300 1
18 470 1
19 230 0
20 430 0
21 460 0
22 220 1
23 250 1
24 200 1
25 390 0

* Example from Montgomery & Peck, 
Introduction to Linear Regression 
Analysis, 2nd Ed. Table 6.4

The table shows the results 
of test-firing 25 ground to air 
missiles at targets of various 
speeds. A “1” is a hit and a 
“0” is a miss.



EXCEL Plot of Data

Plot of yi Versus Target Speed xi (knots)
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There appears to be a 
tendency for misses to 
increase with increasing 
target speed.  

Let us group the data to 
reveal the association 
better.



Grouped Data

Speed 
Interval

Number of 
Attempts

Number of 
Hits

Fraction 
Success

200-240 7 6 0.857
250-290 3 2 0.667
300-340 3 3 1.000
350-390 1 0 0.000
400-440 4 1 0.250
450-490 6 1 0.167

500 1 0 0.000
Sum 25 13
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Clearly, the probability of a hit seems to decrease with speed. We will 
fit a straight-line model to the data using weighted least squares.



Weighted Least Squares

• We will use the inverse of the variance of Yi for the weights wi . 
Problem: these are not known because they are a function of 
the unknown parameters β0, β1 in the regression model.  That is, 
the weights wi are:

• Solution: We can initially estimate β0, β1 using ordinary 
(unweighted) LS. Then, we calculate the weights with these 
estimates and solve for the weighted LS coefficients.  One 
iteration usually suffices.
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Simple Linear Regression in EXCEL

Several methods exist:
– Use “Regression” macro in “Data Analysis Tools.”
– Use “Function” button to pull up “Slope” and “Intercept” under 

“Statistical” listings.  Sort data first by regressor variable.
– Click on data points in plot of Yi vs. Xi, select menubar “Insert” 

followed by “Trendline”.  In dialog box, select options tab and 
choose “Display equation on chart.”

– Use EXCEL array tools (transpose, minverse, and mmult) to 
define and manipulate matrices.  (Requires Cntrl-Shift-Enter for 
array entry.) 



EXCEL Data Analysis Tools

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.64673
R Square 0.41826
Adjusted R Square 0.39296
Standard Error 0.39728
Observations 25

ANOVA
df SS MS F Significance F

Regression 1 2.60991 2.60991 16.53624 0.0004769
Residual 23 3.63009 0.15783
Total 24 6.24

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 1.56228 0.26834 5.82194 0.00001 1.00717 2.11739 1.00717 2.11739
Target Speed (knot -0.00301 0.00074 -4.06648 0.00048 -0.00453 -0.00148 -0.00453 -0.00148

Output:
Can also display residuals 
and various plots.



EXCEL Functions
Target 
Speed 

(knots) xi
Hit or 

Miss yi
200 1
200 1
210 1
220 1
220 1
230 0
240 1
250 1
270 0
280 1
300 1
310 1
330 1
390 0
400 0
410 1
420 0
430 0
460 0
470 0
470 1
480 0
490 0
490 0
500 0

Sorted data.
Intercept 1.562282
Slope -0.00301

Output:

=intercept(y column, x column)

=slope(y column, x column)



EXCEL Equation on Chart

Plot of yi Versus Target Speed xi (knots)

y = -0.003x + 1.5623
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EXCEL Array Functions

Three key functions:

=transpose(range)

=mmult(range1, range2)

=minverse(range)

Requires Cntrl-Shift-Enter each time.



EXCEL Matrix Manipulation
Define the design matrix X by adding a column of “1”s for the 
constant in the model.

Then, progressively calculate:

• the transpose X’

• the product X’X

• the inverse of X’X

• the product X’Y

• the LS regression coefficients = (X’X)-1(X’Y)

The standard errors of the coefficients can be obtained from the
square root of the diagonal elements of the variance-covariance 
matrix: MSE x (X’X)-1.  Find MSE from the residuals SS and df.



EXCEL Matrix Example
1 200
1 200
1 210
1 220
1 220
1 230
1 240
1 250
1 270
1 280
1 300
1 310
1 330
1 390
1 400
1 410
1 420
1 430
1 460
1 470
1 470
1 480
1 490
1 490
1 500

1
1
1
1
1
0
1
1
0
1
1
1
1
0
0
1
0
0
0
0
1
0
0
0
0

X Y

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
200 200 210 220 220 230 240 250 270 280 300 310 330 390 400 410 420 430

X’

25 8670
8670 3295700

X’X

0.456241 -0.0012
-0.0012 3.46E-06

[X’X]-1

13
3640

X’Y

1.562282
-0.00301

Coefficients = [X’X]-1 X’Y
β0
β1



EXCEL Matrix Example
Standard Errors

Target 
Speed 

(knots) xi
Hit or 

Miss yi Y pred Residuals
200 1 0.9612 0.0388
200 1 0.9612 0.0388
210 1 0.9311 0.0689
220 1 0.9011 0.0989
220 1 0.9011 0.0989
230 0 0.8710 -0.8710
240 1 0.8410 0.1590
250 1 0.8109 0.1891
270 0 0.7508 -0.7508
280 1 0.7208 0.2792
300 1 0.6607 0.3393
310 1 0.6306 0.3694
330 1 0.5705 0.4295
390 0 0.3902 -0.3902
400 0 0.3601 -0.3601
410 1 0.3301 0.6699
420 0 0.3000 -0.3000
430 0 0.2699 -0.2699
460 0 0.1798 -0.1798
470 0 0.1497 -0.1497
470 1 0.1497 0.8503
480 0 0.1197 -0.1197
490 0 0.0896 -0.0896
490 0 0.0896 -0.0896
500 0 0.0596 -0.0596

SS Residuals
3.630087

DF
23

MSE
0.15783

0.456241 -0.0012
-0.0012 3.46E-06

[X’X]-1

0.072008 -0.00019
-0.00019 5.46E-07

MSE x [X’X]-1

0.268344
0.000739

Standard Errors of Coefficients
β0
β1

Fitted model appears adequate since 
all Y predictions are between 0 and 1.  
If not, would need non-linear model.



Simple Linear Regression in JMP

• Specify number of rows for data 
• Set up X column
• Set up Y column
• Select under “Analyze” “Fit Y by X”
• For multiple regression, select under 

“Analyze” “Fit Model”



Data Table in JMP

Note that Y is specified “C” 
for continuous at this 
point. 



Fit Model in JMP



Weighted Least Squares 
Regression

In weighted least squares regression, the squared 
deviation between the observed and predicted value 
(that is, the squared residual) is multiplied by weights 
wi that are inversely proportional to Yi.  We then 
minimize the following function with respect to the 
coefficients β0, β1 :

( )SS w Y Xw i i i
i

n

= − −
=
∑ β β0 1

2

1



Weighted LS Regression in 
EXCEL

Several methods exist:
– Transform all variables, including constant. Use 

“Regression” macro in “Data Analysis Tools” with 
no intercept

– Use “Solver” routine on sum of squares of weighted 
residuals

– Use EXCEL array tools (transpose, minverse, and 
mmult) to define and manipulate matrices.  (Requires 
Cntrl-Shift-Enter for array entry.) 



Transform Method for Weighted 
Least Squares

Transform the variables by dividing each term in the 
model by the square root of the variance of Yi. 
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Transformed Variables

The expression below can be solved using ordinary 
LS multiple regression with the intercept (constant 
term) equal to zero.

( )SS Y Z Xw i i i
i
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Transforming Variables
Test 

Firing I Constant

Target 
Speed 

(knots ) x i
Hit or 

M iss y i Y i Pred
Var(Y) =  
(Y i)*(1-Y i)

T =  
1/sqrt[Var(y)]

Constant   
T*Cnst X =  T*X  Y = T*y i

1 1 400 0 0.3601 0.2304 2.083 2.0832 833.3 0.0000
2 1 220 1 0.9011 0.0891 3.350 3.3496 736.9 3.3496
3 1 490 0 0.0896 0.0816 3.501 3.5009 1715.4 0.0000
4 1 410 1 0.3301 0.2211 2.127 2.1266 871.9 2.1266
5 1 500 0 0.0596 0.0560 4.225 4.2250 2112.5 0.0000
6 1 270 0 0.7508 0.1871 2.312 2.3119 624.2 0.0000
7 1 200 1 0.9612 0.0373 5.178 5.1780 1035.6 5.1780
8 1 470 0 0.1497 0.1273 2.803 2.8026 1317.2 0.0000
9 1 480 0 0.1197 0.1054 3.081 3.0809 1478.8 0.0000
10 1 310 1 0.6306 0.2329 2.072 2.0719 642.3 2.0719
11 1 240 1 0.8410 0.1337 2.735 2.7345 656.3 2.7345
12 1 490 0 0.0896 0.0816 3.501 3.5009 1715.4 0.0000
13 1 420 0 0.3000 0.2100 2.182 2.1822 916.5 0.0000
14 1 330 1 0.5705 0.2450 2.020 2.0202 666.7 2.0202
15 1 280 1 0.7208 0.2013 2.229 2.2290 624.1 2.2290
16 1 210 1 0.9311 0.0641 3.949 3.9493 829.3 3.9493
17 1 300 1 0.6607 0.2242 2.112 2.1120 633.6 2.1120
18 1 470 1 0.1497 0.1273 2.803 2.8026 1317.2 2.8026
19 1 230 0 0.8710 0.1123 2.984 2.9836 686.2 0.0000
20 1 430 0 0.2699 0.1971 2.253 2.2526 968.6 0.0000
21 1 460 0 0.1798 0.1475 2.604 2.6041 1197.9 0.0000
22 1 220 1 0.9011 0.0891 3.350 3.3496 736.9 3.3496
23 1 250 1 0.8109 0.1533 2.554 2.5538 638.5 2.5538
24 1 200 1 0.9612 0.0373 5.178 5.1780 1035.6 5.1780
25 1 390 0 0.3902 0.2379 2.050 2.0501 799.5 0.0000

LS Coeff
b0 1.56228
b1 -0.00301

Transformed Factors



EXCEL Data Analysis Regression on 
Transformed Factors (Intercept =0)

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.8252
R Square 0.6809
Adjusted R Square 0.6235
Standard Error 1.0060
Observations 25

ANOVA
df SS MS F Significance F

Regression 2 49.6625 24.8312 24.5376 2.4989E-06
Residual 23 23.2753 1.0120
Total 25 72.9377

Coeffic ients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A
Constant   T*Cnst 1.586687 0.185892 8.535539 1.39E-08 1.20214 1.97123 1.20214 1.97123
X = T*X -0.003091 0.000533 -5.79882 6.58E-06 -0.00419 -0.00199 -0.00419 -0.00199



Weighted Least Squares Analysis 
Using Solver

• Use the unweighted LS coefficients to predict Y.
• Calculate the variance of Yi based on predicted Y in 

equation Yi(1- Yi)
• Calculate the weights wi as the reciprocal variance of Y
• Using trial settings for the coefficients for weighted LS 

regression, calculate the sum of the squared residuals 
(= observed minus predicted response) weighted by wi.

• Apply solver to minimize this sum by changing the 
weighted coefficients



Solver Routine



Solver Solution

SSQ W res SS Res^2
23.2753 3.63288 b0 W LS 1.586687

DF DF b1 W LS -0.00309
23 23

MSE MSE
1.01197 0.157951



EXCEL Matrix Manipulation

Define the design matrix X by 
adding a column of “1”s for the 
constant in the model. Define 
the diagonal weight matrix V 
with variances along diagonal.

Then, progressively calculate:

• the inverse V-1

• the product V-1X

• the transpose X’

• the product X’ V-1 X

• the inverse of X’ V-1 X

• the product V-1 Y

• the product X’ V-1 Y

• the coefficients = (X’ V-1 X)-1(X’ V-1 Y)

The standard error of the 
weighted LS coefficients 
can be obtained from:

( ) 11'*Var −−=β XVX



Weighted Matrix Results



Weighted LS in JMP

• Set up a column for predicted Y using ordinary LS 
coefficients (Requires use of formula calculator in 
JMP)

• Set up column for weights as reciprocal variance of Y 
using formula calculator

• Label this column as weights and select “Fit Model”  



Weighted LS Data Table in JMP



Fit Model for Weighted LS in JMP



Logistic Regression, A Non-Linear 
Model

• The linear model constrains the response to have 
either a zero probability or a probability of one at 
large or small values of the regressor.  This model 
may be unreasonable.

• Instead, we propose a model in which the 
probabilities of zero and one are reached 
asymptotically.

• Frequently we find that the response function is S 
shaped, similar to the CDF of a normal distribution.  
In fact, probit analysis involves modeling the 
response with a normal CDF.   



Logistic Function Model

We attempt to model the indicator variable response 
using the logistic function (logit analysis):
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Linearizing Logistic Function

Consider the logit transformation of the 
probability p:

p* is called the logit mean response.  The 
logit response function is a linear model.    
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Fitting the Logit Response Model
Two Possibilities:

1. If we have repeat observations on Y at each level of 
X, we can estimate the probabilities using the 
proportion of “1”s at each X.  Then, we fit the logit 
response function using weighted least squares.

2. If we have only a few or no repeat observations at 
the various X values, we cannot use proportions.  We 
then estimate the logit response function from individual 
Y observations using maximum likelihood methods.



Weighted LS for Fitting Logit 
Response Model

• The observed proportion at each X level is 

• If the number of observations at each level of X is 
large, the variance of the transformed proportion

is
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Weights for LS Regression

We use the appropriate weights

and solve using weighted LS methods previously 
shown using EXCEL or JMP. Then transform p* to 
the original units p using logistic function.
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Weighted LS Logit Regression

• We need to set following columns:
– X
– N (number of observations at each X)
– Y (number of 1’s at each X)
– pi (proportion)
– p*i (transformed proportion)
– wi (weights)

• At this point, may want to consider MLE 
methods in JMP.



Maximum Likelihood Estimation 
for Logistic Grouped Data in JMP 
• Data table is easy to set up.  

– Column with each X value sequentially repeated
– Y column with alternating 0’s and 1’s
– Frequency column for counts of 0’s and 1’s

• Label X column C and “X”, Y column N 
(nominal) and Y, and Frequency column C 
and “F”

• Then run “Fit Y by X”   



Caution: A JMP “Feature”
• JMP will model the lowest value of the binary response 

as the “success” and the alternative as the failure.
• Thus, “0” will be treated as success and “1” as failure.  

Similarly, “no” will be viewed as success and “yes” as 
failure, since “n” comes before “y” in the alphabet.

• Consequently, the function you expect to be 
monotonically increasing will appear as decreasing and 
vice versa unless you flip the indicator values.

• In the examples that follow, I have listed the tables as 
they appear in texts but displayed the graphs by 
interchanging 1’s and 0’s for analysis (Fit Y by X) 



MLE Table for Grouped Data

Example from Applied Linear Statistical Models by 
Neter, Wasserman, and Kutner, Table 16.1



Fit Y by X



Logistic Regression in Jump 
Individual Values

• We can use JMP’s MLE to fit a model to the 
data.

• The data table entry is simple:
– Column for X
– Column for Y or 1’s and 0’s

• Label X column C and X
• Label Y column N and Y
• Fit Y by X



Data Table for Logistic MLE

Example from Applied Linear Statistical
Models by Neter, Wasserman, and 
Kutner, Table 16.2



Fit Y by X MLE Output



Multiple Logistic Regression

Here’s an example from the JMP In training manual that 
comes with the student version of JMP:

A weatherman is trying to predict the precipitation 
probability by looking at the morning temperature and 
the barometric pressure.  He generates a table for 30 
days in April.  If the precipitation was greater than 0.02 
inches, the day was called rainy.  If below, then dry.



Spring.JMP Data  
Partial Table:



JMP Logistic Analysis: Fit Y by X



Multiple Logistic Regression in JMP

• Fit Y by X
– Generates a separate logistic regression for each 

predictor column Xi

• Fit Model
– Fits an overall logistic regression model for 

specified predictor columns X’s and interactions
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Conclusion
• Binary response data occurs in many important 

applications.
• The simple linear regression model has 

constraints that may affect its adequacy.
• The logistic model has many desirable 

properties for modeling indicator variables.
• EXCEL and JMP have excellent capabilities for 

analysis and modeling of binary data.
• For logistic regression modeling, JMP’s MLE 

routines are easy to apply and very useful. 


