SEMATECH

1997 Statistical Methods Symposium

Austin

Regression Models for a Binary Response Using EXCEL and JMP

David C. Trindade, Ph.D.

Stat-TECH

Consulting and Training in Applied Statistics San Jose, CA

Topics

- Practical Examples
- Properties of a Binary Response
- Linear Regression Models for Binary Responses
- Simple Straight Line
- Weighted Least Squares
- Regression in EXCEL and JMP
- Logistic Response Function
- Logistic Regression
- Repeated Observations (Grouped Data)
- Individual Observations
- Logit Analysis in EXCEL and JMP
- Conclusion

Practical Examples: Binary Responses

Consider the following situations:

- A weatherman would like to understand if the probability of a rainy day occurring depends on atmospheric pressure, temperature, or relative humidity
- A doctor wants to estimate the chance of a stroke incident as a function of blood pressure or weight
- An engineer is interested in the likelihood of a device failing functionality based on specific parametric readings

More Practical Examples

- The corrections department is trying to learn if the number of inmate training hours affects the probability of released prisoners returning to jail (recidivism)
- The military is interested in the probability of a missile destroying an incoming target as a function of the speed of the target
- A real estate agency is concerned with measuring the likelihood of selling property given the income of various clients
- An equipment manufacturer is investigating reliability after six months of operation using different spin rates or temperature settings

Binary Responses

- In all these examples, the dependent variable is a binary indicator response, taking on the values of either 0 or 1 , depending on which of of two categories the response falls into: success-failure, yes-no, rainydry, target hit-target missed, etc.
- We are interested in determining the role of explanatory or regressor variables X_{1}, X_{2}, \ldots on the binary response for purposes of prediction.

Simple Linear Regression

Consider the simple linear regression model for a binary response:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

where the indicator variable $Y_{i}=0,1$.
Since $E\left(\varepsilon_{i}\right)=0$, the mean response is

$$
E\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}
$$

Interpretation of Binary Response

- Since Y_{i} can take on only the values 0 and 1 , we choose the Bernoulli distribution for the probability model.
- Thus, the probability that $Y_{i}=1$ is the mean p_{i} and the probability that $Y_{i}=0$ is $1-p_{i}$.
- The mean response

$$
E\left(Y_{i}\right)=1 \times p_{i}+0 \times\left(1-p_{i}\right)=p_{i}
$$

is thus interpreted as the probability that $Y_{i}=1$ when the regressor variable is X_{i}.

Model Considerations

Consider the variance of Y_{i} for a given X_{i} :

$$
\begin{aligned}
& V\left(Y_{i} \mid X_{i}\right)=V\left(\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i} \mid X_{i}\right)=V\left(\varepsilon_{i} \mid X_{i}\right) \\
& =p_{i}\left(1-p_{i}\right)=\left(\beta_{0}+\beta_{1} X_{i}\right)\left(1-\beta_{0}-\beta_{1} X_{i}\right)
\end{aligned}
$$

We see the variance is not constant since it depends on the value of X_{i}. This is a violation of basic regression assumptions.

- Solution: Use weighted least squares regression in which the weights selected are inversely proportional to the variance of Y_{i}, where

$$
\operatorname{Var}\left(Y_{i}\right)=\hat{Y}_{i}\left(1-\hat{Y}_{i}\right)
$$

Distribution of Errors

- Note also that the errors cannot be normally distributed since there are only two possible values (0 or 1) for ε_{i} at each regressor level.
- Fitted model should have the property that the predicted responses lie between 0 and 1 for all X_{i} within the range of original data. No guarantee that the simple linear model will have this behavior.

Example 1: Missile Test Data*

The table shows the results of test-firing 25 ground to air missiles at targets of various speeds. A " 1 " is a hit and a " 0 " is a miss.

* Example from Montgomery \& Peck, Introduction to Linear Regression Analysis, 2nd Ed. Table 6.4

Test Firing I	Target Speed (knots) xi	Hit or Miss yi
1	400	0
2	220	1
3	490	0
4	410	1
5	500	0
6	270	0
7	200	1
8	470	0
9	480	0
10	310	1
11	240	1
12	490	0
13	420	0
14	330	1
15	280	1
16	210	1
17	300	1
18	470	1
19	230	0
20	430	0
21	460	0
22	220	1
23	250	1
24	200	1
25	390	0

EXCEL Plot of Data

There appears to be a tendency for misses to increase with increasing target speed.
Let us group the data to reveal the association better.

Plot of yi Versus Target Speed xi (knots)

Grouped Data

Clearly, the probability of a hit seems to decrease with speed. We will fit a straight-line model to the data using weighted least squares.

Weighted Least Squares

- We will use the inverse of the variance of Y_{i} for the weights w_{i}. Problem: these are not known because they are a function of the unknown parameters β_{0}, β_{1} in the regression model. That is, the weights w_{i} are:

$$
w_{i}=\frac{1}{V\left(Y_{i} \mid X_{i}\right)}=\frac{1}{p_{i}\left(1-p_{i}\right)}=\frac{1}{\left(\beta_{0}+\beta_{1} X_{i}\right)\left(1-\beta_{0}-\beta_{1} X_{i}\right)}
$$

- Solution: We can initially estimate β_{0}, β_{1} using ordinary (unweighted) LS. Then, we calculate the weights with these estimates and solve for the weighted LS coefficients. One iteration usually suffices.

Simple Linear Regression in EXCEL

Several methods exist:

- Use "Regression" macro in "Data Analysis Tools."
- Use "Function" button to pull up "Slope" and "Intercept" under "Statistical" listings. Sort data first by regressor variable.
- Click on data points in plot of Y_{i} vs. X_{i}, select menubar "Insert" followed by "Trendline". In dialog box, select options tab and choose "Display equation on chart."
- Use EXCEL array tools (transpose, minverse, and mmult) to define and manipulate matrices. (Requires Cntrl-Shift-Enter for array entry.)

EXCEL Data Analysis Tools

Output:

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.64673
R Square	0.41826
Adjusted R Square	0.39296
Standard Error	0.39728
Observations	25

Can also display residuals and various plots.

ANOVA					
		SS	MS	F	Significance F
Regression	1	2.60991	2.60991	16.53624	0.0004769
Residual	23	3.63009	0.15783		
Total	24	6.24			

	Coefficients	Standard Error	Stat	P-value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept	1.56228	0.26834	5.82194	0.00001	1.00717	2.11739	1.00717	2.11739
Target Speed (knot	-0.00301	0.00074	-4.06648	0.00048	-0.00453	-0.00148	-0.00453	-0.00148

EXCEL Functions

EXCEL Equation on Chart

Plot of yi Versus Target Speed xi (knots)

EXCEL Array Functions

Three key functions:
=transpose(range)
=mmult(range1, range2)
=minverse(range)
Requires Cntrl-Shift-Enter each time.

EXCEL Matrix Manipulation

Define the design matrix X by adding a column of " 1 "s for the constant in the model.

Then, progressively calculate:

- the transpose X^{\prime}
- the product $X^{\prime} X$
- the inverse of $X^{\prime} X$
- the product $X^{\prime} Y$
- the LS regression coefficients $=\left(X^{\prime} X\right)^{-1}\left(X^{\prime} Y\right)$

The standard errors of the coefficients can be obtained from the square root of the diagonal elements of the variance-covariance matrix: MSE $x\left(X^{\prime} X\right)^{-1}$. Find MSE from the residuals SS and df.

EXCEL Matrix Example

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	200	210	220	220	230	240	250	270	280	300	310	330	390	400	410	420	430

EXCEL Matrix Example Standard Errors

Target Speed (knots) xi	Hit or Miss yi		
200	1	0.9612	Resed

$\left[X^{\prime} \mathrm{X}^{-1}\right.$
$0.456241-0.0012$
-0.0012 3.46E-06
MSE x $\left[X^{\prime} X\right]^{-1}$
0.072008 -0.00019
-0.00019 5.46E-07
Standard Errors of Coefficients
$\beta_{0} \quad 0.268344$
$\beta_{1} \quad 0.000739$

Fitted model appears adequate since all Y predictions are between 0 and 1 . If not, would need non-linear model.

Simple Linear Regression in JMP

- Specify number of rows for data
- Set up X column
- Set up Y column
- Select under "Analyze" "Fit Y by X"
- For multiple regression, select under "Analyze" "Fit Model"

Data Table in JMP

Note that Y is specified " C " for continuous at this point.

"C"	風 Montgomery 6.4 SLR			- \square - x
	25 Rows 2 Cols		\rightarrow (Hit or Miss Y	-
	1	400	0	
	2	220	1	
	3	490	0	
	4	410	1	
	5	500	0	
	6	270	0	
	7	200	1	
	8	470	0	
	9	480	0	
	10	310	1	
	11	240	1	
	12	490	0	
	13	420	0	
	14	330	1	
	15	280	1	
	16	210	1	
	17	300	1	
	18	470	1	
	19	230	0	
	20	430	0	
	21	460	0	
	22	220	1	
	23	250	1	
	24	200	1	\checkmark
	0 Selected	1		1

Fit Model in JMP

Weighted Least Squares Regression

In weighted least squares regression, the squared deviation between the observed and predicted value (that is, the squared residual) is multiplied by weights w_{i} that are inversely proportional to Y_{i}. We then minimize the following function with respect to the coefficients β_{0}, β_{1} :

$$
S S_{w}=\sum_{i=1}^{n} w_{i}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2}
$$

Weighted LS Regression in EXCEL

Several methods exist:

- Transform all variables, including constant. Use "Regression" macro in "Data Analysis Tools" with no intercept
- Use "Solver" routine on sum of squares of weighted residuals
- Use EXCEL array tools (transpose, minverse, and mmult) to define and manipulate matrices. (Requires Cntrl-Shift-Enter for array entry.)

Transform Method for Weighted Least Squares

Transform the variables by dividing each term in the model by the square root of the variance of Y_{i}.

$$
\begin{aligned}
S S_{w} & =\sum_{i=1}^{n} w_{i}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\frac{Y_{i}}{\sqrt{\operatorname{var} Y_{i}}}-\beta_{0} \frac{1}{\sqrt{\operatorname{var} Y_{i}}}-\beta_{1} \frac{X_{i}}{\sqrt{\operatorname{var} Y_{i}}}\right)^{2} \\
& =\sum_{i=1}^{n}\left(Y_{i}^{\prime}-\beta_{0} Z_{i}-\beta_{1} X_{i}^{\prime}\right)^{2}
\end{aligned}
$$

Transformed Variables

The expression below can be solved using ordinary LS multiple regression with the intercept (constant term) equal to zero.

$$
S S_{w}=\sum_{i=1}^{n}\left(Y_{i}^{\prime}-\beta_{0} Z_{i}-\beta_{1} X_{i}^{\prime}\right)^{2}
$$

Transforming Variables

							Transformed Factors		
Test Firing I	Constant	Speed (knots) xi	Hit or Miss yi	Y Pred	$\begin{aligned} & \operatorname{Var}(\mathrm{Y})= \\ & \left(\mathrm{Y}_{\mathrm{i}}\right)^{*}\left(1-\mathrm{Y}_{\mathrm{i}}\right) \end{aligned}$	$\begin{gathered} \mathrm{T}= \\ 1 / \mathrm{sqrt}[\operatorname{Var}(\mathrm{y})] \end{gathered}$	Constant T*Cnst	$\mathrm{X}=\mathrm{T}^{*} \mathrm{X}$	$Y=T^{*} \mathrm{yi}$
1	1	400	0	0.3601	0.2304	2.083	2.0832	833.3	0.0000
2	1	220	1	0.9011	0.0891	3.350	3.3496	736.9	3.3496
3	1	490	0	0.0896	0.0816	3.501	3.5009	1715.4	0.0000
4	1	410	1	0.3301	0.2211	2.127	2.1266	871.9	2.1266
5	1	500	0	0.0596	0.0560	4.225	4.2250	2112.5	0.0000
6	1	270	0	0.7508	0.1871	2.312	2.3119	624.2	0.0000
7	1	200	1	0.9612	0.0373	5.178	5.1780	1035.6	5.1780
8	1	470	0	0.1497	0.1273	2.803	2.8026	1317.2	0.0000
9	1	480	0	0.1197	0.1054	3.081	3.0809	1478.8	0.0000
10	1	310	1	0.6306	0.2329	2.072	2.0719	642.3	2.0719
11	1	240	1	0.8410	0.1337	2.735	2.7345	656.3	2.7345
12	1	490	0	0.0896	0.0816	3.501	3.5009	1715.4	0.0000
13	1	420	0	0.3000	0.2100	2.182	2.1822	916.5	0.0000
14	1	330	1	0.5705	0.2450	2.020	2.0202	666.7	2.0202
15	1	280	1	0.7208	0.2013	2.229	2.2290	624.1	2.2290
16	1	210	1	0.9311	0.0641	3.949	3.9493	829.3	3.9493
17	1	300	1	0.6607	0.2242	2.112	2.1120	633.6	2.1120
18	1	470	1	0.1497	0.1273	2.803	2.8026	1317.2	2.8026
19	1	230	0	0.8710	0.1123	2.984	2.9836	686.2	0.0000
20	1	430	0	0.2699	0.1971	2.253	2.2526	968.6	0.0000
21	1	460	0	0.1798	0.1475	2.604	2.6041	1197.9	0.0000
22	1	220	1	0.9011	0.0891	3.350	3.3496	736.9	3.3496
23	1	250	1	0.8109	0.1533	2.554	2.5538	638.5	2.5538
24	1	200	1	0.9612	0.0373	5.178	5.1780	1035.6	5.1780
25	1	390	0	0.3902	0.2379	2.050	2.0501	799.5	0.0000
			LS Coeff						
			b0	1.56228					
			b1	-0.00301					

EXCEL Data Analysis Regression on Transformed Factors (Intercept =0)

SUMMARY OUTPUT								
Regression Statistics								
Multiple R	0.8252							
R Square	0.6809							
Adjusted R Square	0.6235							
Standard Error	1.0060							
Observations	25							
ANOVA								
	$d f$	SS	MS	F	Significance F			
Regression	2	49.6625	24.8312	24.5376	2.4989E-06			
Residual	23	23.2753	1.0120					
Total	25	72.9377						
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept	0	\#N/A						
Constant T*Cnst	1.586687	0.185892	8.535539	1.39E-08	1.20214	1.97123	1.20214	1.97123
$X=T^{*} X$	-0.003091	0.000533	-5.79882	$6.58 \mathrm{E}-06$	-0.00419	-0.00199	-0.00419	-0.00199

Weighted Least Squares Analysis Using Solver

- Use the unweighted LS coefficients to predict Y.
- Calculate the variance of Y_{i} based on predicted Y in equation $Y_{i}\left(1-Y_{i}\right)$
- Calculate the weights w_{i} as the reciprocal variance of Y
- Using trial settings for the coefficients for weighted LS regression, calculate the sum of the squared residuals (= observed minus predicted response) weighted by w_{i}.
- Apply solver to minimize this sum by changing the weighted coefficients

Solver Routine

Solver Solution

SSQ Wres	SS Res^2		
23.2753	3.63288	b0 WLS	1.586687
DF	DF	b1 WLS	-0.00309
23	23		
MSE	MSE		
1.01197	0.157951		

EXCEL Matrix Manipulation

Define the design matrix X by adding a column of "1"s for the constant in the model. Define the diagonal weight matrix V with variances along diagonal.

The standard error of the weighted LS coefficients can be obtained from:
$\operatorname{Var} \beta^{*}=\left(X^{\prime} V^{-1} X\right)^{-1}$

Then, progressively calculate:

- the inverse V^{-1}
- the product $\mathrm{V}^{-1} \mathrm{X}$
- the transpose X^{\prime}
- the product $\mathrm{X}^{\prime} \mathrm{V}^{-1} \mathrm{X}$
- the inverse of $X^{\prime} V^{-1} X$
- the product $\mathrm{V}^{-1} \mathrm{Y}$
- the product $\mathrm{X}^{\prime} \mathrm{V}^{-1} \mathrm{Y}$
- the coefficients $=\left(X^{\prime} V^{-1} X\right)^{-1}\left(X^{\prime} V^{-1} Y\right)$

Weighted Matrix Results

$\left[\mathrm{K}^{12} \mathrm{U}^{-1} \mathrm{~K}\right]^{-1}$		$x^{\prime \prime 2} w^{-1} y$	$\left[X^{4} y^{-1} x^{-1}\right]^{\prime \prime} u^{-1} y$	
0.034147	-9.1EE-05	135.8388	1.586687	
-9.16E-05	2.91E-07	33314.51	-0.003091	
Std Error				
610	0.184789			
b 1	0.00053			

Weighted LS in JMP

- Set up a column for predicted Y using ordinary LS coefficients (Requires use of formula calculator in JMP)
- Set up column for weights as reciprocal variance of Y using formula calculator
- Label this column as weights and select "Fit Model"

Weighted LS Data Table in JMP

(${ }^{\text {ra }}$, Montgomery Table 6.4					- \square - x
25 Rows 4 Cols	(C) 图 Target Speed X	C) Hit or Miss Y	$\square \square$ Predicted Y	C. 回 Weights	-
1	400	0	0.360282	4.338792	
2	220	1	0.901182	11.22927	
3	490	0	0.089832	12.23059	
4	410	1	0.330232	4.521228	
5	500	0	0.059782	17.79103	
6	270	0	0.750932	5.346646	
7	200	1	0.961282	26.86806	
8	470	0	0.149932	7.846067	
9	480	0	0.119882	9.477747	
10	310	1	0.630732	4.29352	
11	240	1	0.841082	7.481498	
12	490	0	0.089832	12.23059	
13	420	0	0.300182	4.760255	
14	330	1	0.570632	4.081447	
15	280	1	0.720882	4.969904	
16	210	1	0.931232	15.61549	
17	300	1	0.660782	4.461315	
18	470	1	0.149932	7.846067	
19	230	0	0.871132	8.90781	
20	430	0	0.270132	5.072005	
21	460	0	0.179982	6.775597	
22	220	1	0.901182	11.22927	
23	250	1	0.811032	6.524898	
24	200	1	0.961282	26.86806	
25	390	0	0.390332	4.202159	
					\square
0 Selected					\checkmark

Fit Model for Weighted LS in JMP

* Montgomely Table 6. 4: Model Fit

Response: Hit or Miss Y						
Summary of Fit						
RSquare			0.59373			
RSquare Adj			0.576066			
Root Mean Square Error			1.00592			
Mean of Response			0.578757			
Observations (or Sum Wigts)			234.9693			
Lack of Fit						
Parameter Estimates -						
Term Estimate			Std Error	t Ratio	Probs H\| $^{\text {\| }}$	
Intercept Target Speed X	1.5866	1907	0.185826	8.54	< 00001	
	-0.003	3091	0.000533	-5.80	$\leqslant .0001$	
Effect Test						
Source	Nparm	DF	Sum of Squ	ares	F Ratio	ProbsF
Target Speed X	1	1	34.01	1759	33.6126	\& 00001

Logistic Regression, A Non-Linear Model

- The linear model constrains the response to have either a zero probability or a probability of one at large or small values of the regressor. This model may be unreasonable.
- Instead, we propose a model in which the probabilities of zero and one are reached asymptotically.
- Frequently we find that the response function is S shaped, similar to the CDF of a normal distribution. In fact, probit analysis involves modeling the response with a normal CDF.

Logistic Function Model

We attempt to model the indicator variable response using the logistic function (logit analysis):

$$
\begin{aligned}
E(Y \mid X)=p & =\frac{\exp \left(\beta_{0}+\beta_{1} X\right)}{1+\exp \left(\beta_{0}+\beta_{1} X\right)} \\
& =\frac{1}{1+\exp \left(-\beta_{0}-\beta_{1} X\right)}
\end{aligned}
$$

Linearizing Logistic Function

Consider the logit transformation of the probability p :

$$
p^{*}=\ln \left(\frac{p}{1-p}\right)=\beta_{0}+\beta_{1} X
$$

p^{*} is called the logit mean response. The logit response function is a linear model.

Fitting the Logit Response Model

Two Possibilities:

1. If we have repeat observations on Y at each level of X, we can estimate the probabilities using the proportion of " 1 "s at each X. Then, we fit the logit response function using weighted least squares.
2. If we have only a few or no repeat observations at the various X values, we cannot use proportions. We then estimate the logit response function from individual Y observations using maximum likelihood methods.

Weighted LS for Fitting Logit Response Model

- The observed proportion at each X level is

$$
\bar{p}_{i}=\frac{\left(\# \text { of 1's at } X_{i}\right)}{\left(\# \text { of observations at } X_{i}\right)}
$$

- If the number of observations at each level of X is large, the variance of the transformed proportion
is

$$
\bar{p}_{i}^{*}=\ln \left(\frac{\bar{p}_{i}}{1-\bar{p}_{i}}\right)
$$

$$
V\left(\bar{p}_{i}^{*}\right)=\frac{1}{n_{i} \bar{p}_{i}\left(1-\bar{p}_{i}\right)}
$$

Weights for LS Regression

We use the appropriate weights

$$
w_{i}=n_{i} \bar{p}_{i}\left(1-\bar{p}_{i}\right)
$$

and solve using weighted LS methods previously shown using EXCEL or JMP. Then transform p^{*} to the original units p using logistic function.

$$
\hat{p}=\frac{e^{\hat{p}^{*}}}{1+e^{\hat{p}^{*}}}
$$

Weighted LS Logit Regression

- We need to set following columns:
- X
$-N$ (number of observations at each X)
- Y (number of 1 's at each X)
- p_{i} (proportion)
$-p^{*}{ }_{i}$ (transformed proportion)
- w_{i} (weights)
- At this point, may want to consider MLE methods in JMP.

Maximum Likelihood Estimation for Logistic Grouped Data in JMP

- Data table is easy to set up.
- Column with each X value sequentially repeated
- Y column with alternating 0 's and 1 's
- Frequency column for counts of 0's and 1's
- Label X column C and " X ", Y column N (nominal) and Y, and Frequency column C and "F"
- Then run "Fit Y by X "

Caution: A JMP "Feature"

- JMP will model the lowest value of the binary response as the "success" and the alternative as the failure.
- Thus, " 0 " will be treated as success and " 1 " as failure. Similarly, "no" will be viewed as success and "yes" as failure, since " n " comes before " y " in the alphabet.
- Consequently, the function you expect to be monotonically increasing will appear as decreasing and vice versa unless you flip the indicator values.
- In the examples that follow, I have listed the tables as they appear in texts but displayed the graphs by interchanging 1's and 0's for analysis (Fit Y by X)

MLE Table for Grouped Data

준 NWK Table 16.1				- \square \| x
10 Rows 3 Cols	C Price Reduction X		C (Count	-
1	5	1	168	
2	5	0	32	
3	10	1	149	
4	10	0	51	
5	15	1	130	
6	15	0	70	
7	20	1	97	
8	20	0	103	
9	30	1	52	
10	30	0	148	
				\square
0 Selected	1			1

Example from Applied Linear Statistical Models by Neter, Wasserman, and Kutner, Table 16.1

Fit Y by X

Logistic Regression in Jump Individual Values

- We can use JMP's MLE to fit a model to the data.
- The data table entry is simple:
- Column for X
- Column for Y or 1's and 0's
- Label X column C and X
- Label Y column N and Y
- Fit Y by X

Data Table for Logistic MLE

Example from Applied Linear Statistical Models by Neter, Wasserman, and Kutner, Table 16.2

R NWK Table 16.2			- \square - x
25 Rows 2 Cols	C (Mths $\operatorname{Exp} \mathrm{X}$	(B Task Suce Y	-
1	14	0	
2	29	0	
3	6	0	
4	25	1	
5	18	1	
6	4	0	
7	18	0	
8	12	0	
9	22	1	
10	6	0	
11	30	1	
12	11	0	
13	30	1	
14	5	0	
15	20	1	
16	13	0	
17	9	0	
18	32	1	
19	24	0	
20	13	1	
21	19	0	
22	4	0	
23	28	1	
24	22	1	
25	8	1	
			\square
0 Selected	1		\rangle

Fit Y by X MLE Output

Multiple Logistic Regression

Here's an example from the JMP In training manual that comes with the student version of JMP:

A weatherman is trying to predict the precipitation probability by looking at the morning temperature and the barometric pressure. He generates a table for 30 days in April. If the precipitation was greater than 0.02 inches, the day was called rainy. If below, then dry.

Spring．JMP Data

Partial Table：

大 Smind														
\qquad	目 mons	（⿴囗 \square morth	困 clate	C）\square Tenp	$\text { C } \square$	C Huridt：FM	C \square Hunida：PM	\square Precip	\square Pressur	C wrDel：PM		$\text { C } \square$ wrSpeed	\square SkyCover	
3	04	AFR	04.00	50	3	63	06	0.27	29.4	7	05	6.8	8	Fairy
4	04	AFR	04．04	43	4	47	42	0.05	29.21	25	42	14.2	10	Rainy
5	04	AFR	04.05	42	5	44	43	0.001	29.32	27	43	97	8	Dry
6	04	AFR	04.06	46	6	42	41	0.001	29．33	29	41	10.5	7	Dry
7	04	APR	04，07	52	7	40	37	0	293	27	37	8.8	3	Dry
8	04	APR	04.08	59	8	36	23	0	29.31	30	23	67	3	Dry
9	04	APR	04.09	56	9	31	25	0	29．33	34	25	3.3	3	Ory
10	04	AFR	04／10	57	10	27	23	0	29.41	22	23	1.1	0	Dry
11	04	APR	04／11	62	11	42	43	0.08	29.36	17	43	6.3	8	Rainy
12	04	AFR	04／72	66	12	45	66	0.23	29.38	22	66	68	8	Fairy

JMP Logistic Analysis: Fit Y by X

Multiple Logistic Regression in JMP

- Fit Y by X
- Generates a separate logistic regression for each predictor column X_{i}
- Fit Model

$$
E\left(Y \mid X_{i}\right)=\frac{1}{1+\exp \left(-\beta_{0}-\beta_{1} X_{i}\right)}
$$

- Fits an overall logistic regression model for specified predictor columns X's and interactions

$$
E\left(Y \mid X_{1}, X_{2}\right)=\frac{1}{1+\exp \left(-\beta_{0}-\beta_{1} X_{1}-\beta_{2} X_{2}-\beta_{12} X_{1} X_{2}\right)}
$$

Conclusion

- Binary response data occurs in many important applications.
- The simple linear regression model has constraints that may affect its adequacy.
- The logistic model has many desirable properties for modeling indicator variables.
- EXCEL and JMP have excellent capabilities for analysis and modeling of binary data.
- For logistic regression modeling, JMP's MLE routines are easy to apply and very useful.

